
Technical Briefing 3
Commonly used public health statistics and
their confidence intervals

Purpose
This is the third in a series of technical briefings
produced by the Association of Public Health
Observatories (APHO), designed to support public
health practitioners and analysts and to promote the
use of public health intelligence in decision making.

In this briefing we describe the calculation of the
more common types of statistic used within public
health intelligence, specifically: rates, proportions,
means and age-standardised rates and ratios. We
also describe the use of confidence intervals, i.e.
what they are and why they are used, and present
the APHO-preferred methods for calculating the
intervals for the types of statistic described. Further
material, including detailed bibliography, methods
and tools, is available from http://www.apho.org.uk
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Key public health measures
Counts, proportions, percentages and rates

The most basic measure used in public health is the count.
This may be a count of events such as deaths or
admissions to hospital, or a count of people with a
particular attribute such as people who smoke. This count
itself is essential information for planning the health
services for prevention and/or treatment. However, to
properly investigate the distribution of disease and risk
factors and to make comparisons between different
populations, the denominator population or population-
years at risk in which the count was observed must also be
taken into consideration. The simplest way of doing this is
to divide the numerator count by the denominator
population to give a proportion, percentage or rate. 

At this point it is worth distinguishing between these terms.
The term ‘rate’ in particular tends to be rather loosely
applied to describe many public health statistics, some of
which would be better described as proportions. The
distinction is not important to the calculation of the statistic
itself but is necessary to best determine the confidence
interval. 

Proportions are statistics where the denominator is the
count of a ‘closed’ population, and the numerator is the
count of members of this population that have a specified
characteristic. Common examples in public health occur
where a population is evaluated at a finite time point for a
certain characteristic, e.g. survey prevalence of smoking or
obesity, day cases as a proportion of elective admissions,
discharge to usual place of residence, or stillbirths as a
proportion of all live and still births. 

For other statistics the population is an ‘open’ one
evaluated over a period of time. Individuals may enter or
leave the population during this period (through ageing,
migration, birth, death, loss to follow-up etc), each
contributing different periods at risk. The denominator is the
sum of the population-periods at risk experienced by the
individuals (or an approximation to this, such as a mid-year
population estimate). The numerator is usually a count of
events that occurred in the population over the period. We
shall refer to such statistics as ‘rates’ and examples include
mortality rates and cancer incidence rates. 

Both proportions and rates are frequently multiplied by a
scaling factor for presentation purposes, e.g. per 100,000.
When this factor is 100 the statistic is usually described as
a percentage. In most, but not all, cases percentages are
proportions.

Means

Some public health indicators are reported as the mean of
the individual values observed in a sample or population.
For example, the mean number of decayed, missing or
filled teeth in children, or the mean length of stay in
hospital. 

Age-standardised ratios, rates and
proportions

Disease and mortality rates may vary widely by age. Such
variation complicates any comparisons made between two
populations that have different age structures. For
example, consider two areas A and B with equal-sized
populations and identical crude all-age death rates. At first
glance they appear to have a similar mortality experience.
Suppose, however, that area A has a younger age
structure than area B. Given that mortality rates increase
with age, one would expect the older population in area B
to experience more deaths. The fact that the two have
identical rates means that the younger population in area
A must have a relatively worse mortality experience.

The most comprehensive way of comparing the disease
experience of two populations is to present and compare
their age-specific rates. However, when the number of
populations being compared increases, the volume of
data that needs to be considered quickly becomes
unmanageable. What is needed is a single, easily
interpreted, summary figure for each population that is
adjusted to take into account its age structure. Such
summary figures are calculated using age standardisation
methods. It may also be desirable to standardise for other
variables, such as sex or level of deprivation, that may also
potentially confound any comparisons. 

The two most common methods of age standardisation
are: 

� Indirect: The age-specific rates of a chosen standard
population (usually the relevant national or
regional population) are applied to the age
structure of the subject population to give an
expected number of events. The observed
number of events is then compared to that
expected and is usually expressed as a ratio
(observed/expected). A common example is the
standardised mortality ratio (SMR). 

� Direct: The age-specific rates of the subject population
are applied to the age structure of the standard
population. This gives the overall rate that would
have occurred in the subject population if it had
the standard age-profile.

Table 1 shows the advantages and disadvantages of each
method.
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Indirect 

Advantages

� The indirect method requires only the total number of 
observed events in the subject population and may 
therefore be used in some situations where the direct 
method cannot. 

� Indirect standardisation is more stable as it minimises
the variance, giving a smaller standard error and
narrower confidence intervals than the direct method.
It is therefore more appropriate when dealing with the
statistical significance of small populations.[1]

Disadvantages

� Indirect standardisation does not necessarily preserve
consistency between the populations being
compared, and in extreme situations may give
misleading results. See Figure 1.

� Indirectly standardised ratios for areas A and B may
be compared to the standard but should only be
directly compared to each other if the age structures
of areas A and B are similar to the standard, or if the
ratio of their age-specific mortality rates to that of the
standard is consistent across the age groups.[2]

� Indirect standardisation can be used for comparisons
over time, but only by freezing the standard rates at a
fixed point in time. This is often felt to be less than
intuitive. The validity of the comparisons is subject to
the same conditions as described above for
comparison between areas.

Direct

Disadvantages

� The direct method requires that the observed events
in the subject population are available broken down
by age. If this information is not available the directly
standardised rate cannot be calculated. 

� For small subject populations the age-specific rates
of the subject population are based on small
numbers and consequently are unstable. Small
changes in the number of deaths in a particular age
band may result in large changes in the directly
standardised rate. 

Advantages

� The direct method preserves consistency between the
populations being compared, i.e. if each age-specific
rate in area A is greater than each of the
corresponding age-specific rates in area B, then the
directly standardised rate for area A will always be
higher than that of area B irrespective of the standard
population used.[1;3] Consequently it is the preferred
method for comparing a number of different
populations against each other.

� Directly standardised rates can readily be compared
over time provided the same standard population is
used.

Table 1. Advantages and disadvantages of indirect and direct age standardisation.

Figure 1. Example of misleading indirectly age-standardised ratios.

Figure 1 illustrates the circumstances in which indirect standardisation can lead to loss of consistency and produce
misleading results. 
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In Figure 1, even though Population A has double the rate
of Population B in every age-group, the SMR for
Population A is lower than that for Population B. This arises
because the population distribution is very different, and
the ratios of the local rates to the reference rates are very
uneven. Although it is not unusual for different populations
to have very different age-distributions, it is unusual for the
ratios to be so different - in general rates will tend to vary
with age in a consistent way across different populations.

In practice, the two methods generally give comparable
results. Moreover, it has been demonstrated by Breslow
and Day[4] that when the two do differ it is not necessarily
true that the direct method is the more ‘correct’. Where the
ratio between the age-specific rates of areas A and B
varies by age group the choice of standard population/
rates becomes crucially important for both indirect and
direct methods. This choice is often as, or more, important
than the choice of method.[5;6]

The European Standard Population (ESP) is often used for
direct standardisation. This is a hypothetical population
structure which does not change and is the same for both
genders. The advantage of using such a hypothetical
population is one of greater comparability, for example,
between different countries, across time periods, and
between genders. However, the ESP dates from the 1970s,
and compared to current UK age structures it puts much
greater weight on the younger age groups. This can have
some undesirable effects as ideally the standard
population should be similar to the populations being
standardised. For the same reasons it is usually
inappropriate to use the ESP for indicators where the
denominator is a particular subgroup of the population, for
example those with a certain condition or occupation,
patients admitted to hospital, etc. The age structure of
these subgroups may differ substantially from that of the
ESP. In summary, the ESP must be used when
comparisons are to be made with other rates which have
been standardised to the ESP, but for self-contained
comparative analyses, a more suitable (e.g. average)
population may be preferred.

Life expectancy

Life expectancy is another common public health statistic
that allows comparisons (of mortality experience) between
areas with different population structures. It is based on a
life table approach rather than direct or indirect
standardisation. The methodology is beyond the scope of
this briefing and the reader is referred to other PHO and
ONS resources.[7-9]

Confidence intervals
A confidence interval is a range of values that is used to
quantify the imprecision in the estimate of a particular
value. Specifically it quantifies the imprecision that results
from random variation in the estimation of the value; it
does not include imprecision resulting from systematic
error (bias). 

In many studies the source of this random variation is
sampling. Even in the best designed studies there will be

random differences between the particular sample group
selected and the overall target population of inference. 
Any measurement taken from the sample group therefore
provides an imprecise estimate of the true population
value.  

In public health many indicators are based on what can be
considered to be complete data sets and not samples,
e.g. mortality rates based on death registers. In these
instances the imprecision arises not as a result of
sampling variation but of ‘natural’ variation. The indicator is
considered to be the outcome of a stochastic process, i.e.
one which can be influenced by the random occurrences
that are inherent in the world around us. In such instances
the value actually observed is only one of the set that
could occur under the same circumstances. Generally in
public health, it is the underlying circumstances or process
that is of interest and the actual value observed gives only
an imprecise estimate of this ‘underlying risk’.

The width of the confidence interval depends on three
things:

1) The sample size from which the estimate is derived (or
population size if derived from a complete data set).
Larger samples give more precise estimates with
smaller confidence intervals.

2) The degree of variability in the phenomenon being
measured. Fortunately, observed phenomena often are
known, or assumed, to follow certain probability
distributions, such as the Poisson or Binomial. This
allows us to express the amount of variability
mathematically, and build it into the confidence interval
formulae.

3) The required level of confidence - this is an arbitrary
value set by the analyst giving the desired probability
that the interval includes the true value. In medicine
and public health the conventional practice is to use
95% confidence but it is not uncommon to see
alternatives. Within the APHO community 99.8%
confidence intervals are increasingly being used
alongside 95% intervals to reflect the control limits
used in Statistical Process Control approaches.[10]

Increasing the level of confidence results in wider
limits. 

For a given level of confidence, the wider the confidence
interval, the greater the uncertainty in the estimate.

Figure 2 demonstrates confidence intervals for smoking
prevalence generated by 20 random samples of 100
persons. For sample one the smoking prevalence
observed is 16.9% and the associated 95% confidence
interval is 10.8% to 25.4%. This means that we are 95%
confident that the range 10.8% to 25.4% includes the true
population prevalence. On average, 95 out of every 100 of
these intervals will include the population value. This can
be seen in the figure where 19 of the 20 intervals (ie. 95%)
include the 25% population prevalence, the exception
being sample 16. In many public health applications we do
not have the luxury of repeated samples, but the
confidence intervals are calculated in such a way as to
ensure that if we did, then 95% of them would contain the
true value.
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When should confidence intervals be used?

Confidence intervals should be presented alongside the
point estimate wherever an inference is being made from a
sample to a population or from a set of observations to the
underlying process (or ‘risk’) that generated them. 

Presentation of confidence intervals

When presenting the confidence interval the level of
confidence should be clearly stated and the lower and
upper limits of the interval clearly labelled or presented as
a range. The use of the ± sign or a dash to indicate the
range should be avoided.

For example:

Area Statistic 95% Confidence Interval

Lower Limit Upper Limit

Area 1 95.2 93.5 96.9

Area 1 95.2 93.5 to 96.9

Area 1 95.2 (93.5, 96.9)

For Area 1 the statistic was 95.2 (95% confidence interval:
93.5 to 96.9).

In graphs or charts, the confidence limits are usually
represented as bars or whiskers extending above and
below the value of the estimate. Figure 2 is a typical
example.

Using confidence intervals for making
comparisons

The confidence interval may be used to compare an
estimate against a target or benchmark value in a similar
way to performing an exact statistical test. In such a test
we proceed on the assumption that the true value is equal
to the target or benchmark value. The appropriate
probability distribution is then used to determine the
probability (P-value) of observing a value as extreme, in
either direction (a two-sided test), as the actual observed
estimate. If the P-value is below a given significance
threshold, α, then the original assumption is rejected and
the difference is said to be statistically significant.  

If the target or benchmark value is outside the confidence
interval it can be inferred that the difference between the
estimate and the target is statistically significant at the
corresponding significance level. For instance, if the target
value is outside the 95% confidence interval then the
difference is significant at the α = 5% level (P < 0.05). 

Figure 2. Smoking prevalence: sample estimates and 95% confidence intervals for 20 random samples of 100
persons from a population with a smoking prevalence of 25%.
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Comparisons are often made between two or more
different estimates, for example between different
organisations or time periods (see Figure 3). Sometimes in
such cases statistical testing is undertaken by comparing
the confidence intervals of the estimates to see if they
overlap - with non-overlapping confidence intervals being
considered as statistically significantly different. This is
quick and easy to do, but not necessarily conclusive.
Whilst it is safe to assume that non-overlapping
confidence intervals indicate a statistically significant
difference, it is not always the case that overlapping
confidence intervals do not. A more exact approach is to
calculate the ratio of the two estimates, or the difference
between them, and construct a test or confidence interval
based on that statistic. Such methods are not covered in
this briefing, but can be found in a standard textbook.

Calculating the statistics and their
confidence intervals
The following section presents the calculation of the
statistics and their confidence intervals in detail. The
formulae become rapidly more complicated, but please do
not let that deter you, as APHO will be turning them into
user-friendly spreadsheet tools available from
http://www.apho.org.uk 

Proportions

The proportion p is given by: p = _ Formula 1

where:
O is the observed number of individuals in the
sample/population having the specified characteristic;
n is the total number of individuals in the
sample/population.

Figure 3. Using confidence intervals for making comparisons.

Target Line

✓
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✓
Correct

?
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O
n

Significantly
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Not significantly
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Significantly
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Confidence intervals for proportions are determined using
the Binomial distribution. A Normal approximation method
is often presented in statistical textbooks but does not
perform well when the numerator and/or denominator is
small. The preferred APHO method is the Wilson Score
method [11] which has been evaluated and recommended
by Newcombe and Altman.[12;13] It can be used with any
data values and, unlike some methods, it does not fail to
give an interval when the numerator count, and therefore
the proportion, is zero.[14]

The 100(1_α)% confidence interval limits for the proportion
p are given by:

Formula 2a

Formula 2b

where:
q = (1_p) is the proportion without the specified
characteristic;
z is the 100(1_ α/2)th percentile value from the Standard
Normal distribution. For example for a 95% confidence
interval, α = 0.05, and z = 1.96 (i.e. the 97.5th percentile
value from the Standard Normal distribution).

Rates

The rate of events r is given by: r = _ Formula 3

where:
O is number of observed events;
n is the population-years at risk.

Provided the rate is low and the denominator at risk is
large, the variability in the observed count O is described
by the Poisson distribution. This can be used to give a
confidence interval for O and hence r. The preferred
method is Byar’s approximation as it is computationally
simple and gives very accurate approximations to the
exact Poisson probabilities even for small counts.[15]

However, tables of the exact probabilities are widely
available and should be used for the lower limits of
observed counts under 5.

Using Byar’s method, the 100(1_ α)% confidence interval
limits for the rate r are given by:

Formula 4a

Formula 4b

where:
O is the observed count;
z is the 100(1_ α/2)th percentile value from the Standard
Normal distribution. 

Where the rate r is not low, the appropriateness of the
Poisson distribution is more debatable but it is still
generally used.[16] In extreme circumstances, for example
looking at high risk groups in small populations, the use of
the Poisson distribution may lead to limits beyond sensible
bounds. 

Counts

The limits of the observed count should be determined
using Formulae 2a and 2b, or 4a and 4b, depending on
whether the count is based on a Binomially distributed
proportion or a Poisson rate respectively. For example, for
a smoking prevalence indicator the observed count is
based on a proportion and its limits should be calculated
from the Binomial distribution; for a mortality or cancer
incidence count Poisson limits should be used. In both
cases the limits for the proportion or rate should be
multiplied by n to convert them into limits for the observed
count. (In the case of Formula 4a and Formula 4b, this
simply means using the elements referred to as ‘Olower’ and
‘Oupper’.)

Means

The sample mean x is given by: x =

Formula 5

Where:
xi is the observed value for the ith individual;
n is the total number of individuals in the
sample/population.

O
n

_                  _



When the size of the sample is large (say >50), the sample
mean is Normally distributed and its standard error can be
estimated by s/√n, where s is the observed standard
deviation of the individual values in the sample:

The traditional Normal approximation method can be used to
give the 100(1_ α)% confidence interval limits:

Formula 6a

Formula 6b

where z is the 100(1_ α/2)th percentile value from the
Standard Normal Distribution.

When samples are small, s/√n will vary substantially
between samples and cannot be considered a reliable
approximation to the standard error of the mean. However, if
the population distribution of the individual values itself is
Normal, with mean µ, then the distribution of (x-µ)/(s/√n)
follows the Student’s t-distribution for (n_1) degrees of
freedom. The confidence intervals are then found by
substituting the appropriate percentile point values of the
Standard Normal distribution with those from the 
t-distribution with the appropriate degrees of freedom. These
values are found from tables or the built-in functions found in
most spreadsheet and statistical software.

When using such tools the reader should ensure that they
are using the correct set of probabilities (two-tailed) and that
they are evaluating the distribution against the appropriate
value, i.e. the confidence level or probability level or
percentile point, as this requirement may vary between tools.

Formula 7a

Formula 7b

where t is the 100(1_ α/2)th percentile value from the 
t-distribution with (n_1) degrees of freedom. For example for
a 95% confidence interval for a mean of 10 observations, 
α= 0.05 and t = 2.26 (i.e. the 97.5th percentile value from
the t-distribution with 9 degrees of freedom).

For small samples where the individual values are not
Normally distributed the data can be adjusted so that they
become so by applying a suitable transformation. 

Indirectly age-standardised ratios and rates

The statistic most commonly presented for the indirect
method of age standardisation is the standardised ratio -
this is the ratio of the observed number of events relative
to the number of events that would be expected if
standard age-specific rates were applied to the particular
observed population’s age structure. A common example
is the standardised mortality ratio (SMR).

The indirectly standardised ratio (ISR) is given by:

Formula 8

where:
Oi is the observed number of events in the subject
population in age group i;
Ei is the expected number of events in the subject
population in age group i given the standard rates;
ni is the number of individuals in the subject population in
age group i;
λi is the crude age-specific rate in the standard population
in age group i.

For presentation purposes, the ratio is usually multiplied by
100. By definition, the standard population will have a ratio
of 100. Ratios above 100 indicate that the number of
events observed was greater than that expected from the
standard rates, and ratios below 100 that it was lower. In
some instances the ratio is multiplied by the overall crude
rate of the standard population and presented as an
indirectly age-standardised rate.

For the purposes of calculating the confidence interval of
the ratio, the expected count is considered to be precise.
The imprecision in the ratio is therefore dependent only on
the imprecision of the observed count. 

The 100(1_α)% confidence interval limits of the ratio are
given by:

Formula 9a

Formula 9b

where:
Olower and Oupper are as defined in Formula 4a and Formula
4b respectively;
E is the expected count.
The confidence limits as calculated above should then be
multiplied by any scaling factor that has been used in
presenting the ratio itself.

8
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Directly age-standardised rates

Directly age-standardised rates express an indicator in
terms of the overall rate that would occur in a standard
population age-structure if it experienced the age-specific
rates of the observed population. 

The direct rate (DSR) is given by:

Formula 10

where:
wi is the number, or proportion, of individuals in the
standard population in age group i;
Oi is the observed count in the population in age group i;
ni is the observed denominator population-period-at-risk in
age group i.

The directly standardised rate is a weighted sum of the
independent age-specific rates. Therefore, its variance is a
weighted sum of the variances of each of those age-
specific rates. The preferred method for calculating the
confidence interval is one described by Dobson.[17] In this
method the exact interval is found for the crude count and
then weighted and scaled to give the interval for the
directly standardised rate. The weight used is the ratio of
the standard error of the DSR to the standard error of the
crude count.
For rates that assume the Poisson distribution, the
confidence limits for the DSR are given by: 

Formula 11a

Formula 11b

where O is the total number of observed events in the
population;
and the limits Olower and Oupper of the observed count are
determined using Byar’s approximation (Formulae 4a and
4b) or exact look-up tables.

The variance of the DSR and the variance of the observed
count are estimated by:

Formula 11c

where:
wi is the number, or proportion, of individuals in the
standard population in age group i;
Oi is the observed count in the subject population in age
group i;
ni is the denominator population-period-at-risk in the
subject population in age group i.
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Glossary

Binomial distribution: the probability distribution that
applies to discrete data with only two possibilities - e.g.
success or failure, alive or dead. It is used to generate
confidence intervals for proportions. Its shape is
dependent on two parameters: the number of trials, or
observations; and the proportion of successes. 

Normal distribution: familiar bell-shaped curve, which is
a good representation of the probability distribution of
many naturally-occurring variables. Its shape is dependent
on two parameters: the mean and the standard deviation.

Parameter: a quantity that defines certain characteristics
of a system, function or distribution. 

Poisson distribution: probability distribution representing
the number of events (e.g. accidents) in a fixed space of
time. Its mean and variance are equal, so its shape is
determined by a single parameter.

Probability distribution: a function that gives the
probability of a specific value, or value within a given
interval, being observed at random given the underlying
parameters. 

Standard deviation/Standard error: statistical measure
of the amount of variation around the mean of a
distribution. It is defined as the square root of the variance.
By convention, the term ‘standard deviation’ is used only
when the distribution is describing variation in individual
values within a population or sample. The standard
deviation of a summary measure, such as the sample
mean, is known as the ‘standard error’. 

Standard Normal distribution: a Normal distribution with
mean µ = 0 and standard deviation σ = 1. Any Normally
distributed variable x, with mean µ and standard deviation
σ, can be transformed into a ‘Z-score’ which follows the
Standard Normal distribution, by using the relationship 
z = (x- µ)/σ. This relationship means that there is no need
to publish tables for any Normal distribution other than the
Standard Normal distribution.

Standard population: a reference population age-
structure used for direct age standardisation. It may be a
real population, e.g. England mid-year estimates 2006, or
a hypothetical one, e.g. European Standard Population.

Standard rates: a set of reference age-specific rates
used for indirect age standardisation. In nearly all
instances these are real rates rather than hypothetical
ones and are taken from the reference or benchmark
population against which the populations being
standardised are to be compared.

Statistical significance/Statistical test: to test a given
hypothesis, we initially proceed on the assumption that it is
true. If, on this basis, an observation as extreme as that
obtained would have been very unlikely to arise by chance,
we then ‘reject’ the hypothesis. The cut-off point or
‘significance level’ below which we consider the probability
to be too small is arbitrary, but is traditionally set at 0.05
(5%). Results which lead to the rejection of the hypothesis
are said to be ‘statistically significant’.

Transformation: the application of a mathematical
function to a set of data values, e.g. the logarithm, square
root or reciprocal. The purpose is to ‘transform’ the data
so that the distribution of values more closely resembles a
Normal distribution.

Variance: statistical measure of the amount of variation
around the mean of a distribution. The greater the variance
the more widely distributed are the observed values.

Z-score: a value that follows a Standard Normal
distribution.
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